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The aim of this paper is to discuss the reduction of dimensionality
in three statistical problems. These are discarding of variables in
multiple linear regression, search for representative variables by
regression analysis methods and search for variables with the greatest
discriminatory powver. The search for the subset from among a great number
of predictor variables is practically impossible to be done in an optimal
vay because of high costs of computations. Therefore, a stepvwise selection
is commonly used in such cases. In this paper the Monte Carlo method
consisting in generating a declared number of subsets and in choosing
the best one from them is discussed in comparison vith a stepvise
selection. The methods vere compared in tLvo ways. The first comparison wvas
performed for real data comprising results of examination of patients

suffering from bronchial asthma and chronic bronchitis. In linear
regression the Monte Carlo method gave better results than a stepvise
procedure especially vhen the number of subsets generated vas greater
than the number of subsets analysed in the stepvise selection. For the

second comparison a simulation study vas performed on the basis of
pseudo-random data vith multivariate normal distribution. The comparison
vas done for an equal number of Lhe analysed subsets.

1. ABOUT REDUCTION OF DIMENSIONALITY GENERALLY

The necessity of dimensionality, reduction is often found in various

statistical problems, e.g. in regression analysis, discriminant analysis
or cluster analysis.

hey words: multiple linear regression, interdependence analysis, search
of variables with the greatest discriminative power,
reduction of dimensionality, stepwise selection, Monte Carlo
method of seiection’



Let us consider P predictor variables. The subset consisting of
r variables (the most important ones) should be chosen out of the complete
set of p variables. To find the best subset or the optimal one all [1;
subsets should to be analysed with reference to a criterion used in the
problem under consideration. In practice, when the number of predictor
variables is large, the optimal choice often cannot be performed, even
with a computer, because of the cost of analysing all E subsets. In
such sityations the reduction of the number of variables can be done ‘)y
the stepwise selection method, i.e. by the method in which the variables
are added one by one. At each step the best variable is chosen ouf of the
remaining features. Of course, the subset chosen in such a way cannot be
the best one. The problem of the reduction of variables can also be
approached by the Monte Carlo method, which consists in generating a
declared number of subsets and in choosing the best subset among them. Two
methods for generating subsets (with equal and unequal variable weights)
are possible. The question is whether the subset found by the Monte Carlo
method is better (with reference to a particular criterion used in the
problem under consideration) than the subset established by a stepwise
selection. In the paper, a comparison of the stepwise and Monte Carlo
methods is made on the basis of real medical data concerning 105
individuals each with 47 variables, and on the basis of simulated data

generated from the multivariate normal distribution.
2. CHOICE OF VARIABLES IN MULTIPLE LINEAR REGRESSION

Let us consider P predictor variables X xz....,x and a
dependent variable y. Further, let us assume that ¥ is related to the

predictor variables by the linear regression equation
vy = b°+ blxl+...+ bpxp+ e % (1)

where bo' Bl, & ,bp are regression coefficients and e is a random
error term. =
Let us assume that we have a sample of n, n>p+! individuals. Each of

them is characterized by a vector (x ) of p predictor

i1? xiz,.....\'.lp
variables and a dependent variable ¥ (i=1,2,...,p). The usual least
squares estimates bo 3 bl .5 oo g bp of the regression coefficients can be

found by solving normal equations. A linear dependence between the

variable y and the predictor variables Xis xz,....xp is measured by
the multiple correlation coefficient
T e
- SST-SSE
Ry(l.z,...,p) = v/ SST : (2)

where SST = (v.-¥ )2 is the total sum of squares (y being the sample
i=1 %1 7, A ~ . ]

mean) and SSE = z;'_‘(yi-bo-blxi—...- bpxiplz is the residual sum of



squares. The squared multiple correlation coefficient R:(I,Z,.. o) also
called determination coefficient is commonly used as a criterion for
the choice of the best subset of predictor variables in linear reﬁression
(e.g. Mardia, Kent and Bibby (1979)). The optimal subset consisting the r

predictor variables gives the highest determination coefficient
2

T SRR
optinal choice of variables requires investigation of

between the predictor variables and the variable y. The
5 subsets. Such a
method was programmed and analysed e.g. by Bartkowiak (1978). Bartkowiak
(1981) compared it with the method by leaps and bounds (Furnival and
Wilson (1974)) and proved that the latter one needed more processor time.

The stepwise procedure of Bartkowiak (1978) used in this paper as a
basis for a comparison with the Monte Carlo method, consists in a jerking
search of variables in the regression set. The stepwise selection of
variables is performed using a double criterion. The total number of
chosen variables should not be greater than ) o and the partial
correlation coefficient py(k+1)(l,2... i) should be significant at the
significance level equal to a (where the (k+1)th variable is added
to the subset).

The significance is tested by:

R2 - g? ’
F o= —Y(k+1) y(1,...,k) n-k-2 (3)
l_Rz g 1 * "1,n-k-2
y(k+1)

(e.g. Bartkowiak, 1982a).

Having selected a declared number of variables we can change the
significance level by diminishing a. Then the variables which do not
agree with the new level a are eliminated (backward eliminati&n). If the
number of variables in the subset is less than r we can add to the

regression further variables significant at the new level a.

3. INTERDEPENDENCE ANALYSIS BY ANALYSIS OF REGRESSION

Let us consider the set Xy1XgaeeeaXy of p variables. We would like to
find a subset consisting of r variables so that the remaining p-r
variables are explainable by variables in the chosen subset as fully as
possible.

Let us label r variables in the subset by indices (il,iz,...,ir).

The variables of the subset (il,iz,...,ir} are treated as independent

(predictor) variables, the remaining p-r variables are treated as

dependent ones. Then, we consider the residual sums of squares
i

Ss r+k ) (k=1,2,...,p-r) of the (irfk)th variable with respect

Begoit i
: Edst addes
to il' iz,....ir variables and we find such variable ko for which the

residual sum of squares is maximum, i.e.,



ko

SSE . s = max SSE
(11'12""'Ir} 1<ks<p-r

i
r+k
T, T s (4)

Then, we find the subset {i:.ig,...,i:} for which the maximum

residual sum of squares is minimum

k i
SSE® ol = min max ssxz{'i‘"'i 23
{il'iz”"'if} all subsets 1<ks<p-r i LR

{ilriz,...,ir)

. (5)

So the criterion for choosing the best subset is the maximum residual sum
of squares. The smallest one indicates the best subset.

The stepwise choice of the subset can be performed upwards or
downwards ' (programmed by Bartkowiak (1982c)). In the first method, the
variables are added one by one to the subset. In the second one variables

are eliminated one by one out of the complete set of variables.

4. SEARCH OF VARIABLES WITH THE GREATEST DISCRIMINATORY POWER

Let us assume that we have a sample of n individuals. Each one is
characterized by an observational vector (xl,xz,...,xp) of predictor
variables. The discriminatory power of the variables XyrXpyeeesX is in
keeping with the possibility of discrimination between the considered
populations. The discriminatory power can be measured by various criteria
e.g. the probability of misclassification, Wilks A statistic, trace
criterion. In this paper Wilks A statistic is used to measure the
discrilinati?e power of variables. It is defined as the ratio of two
deteflinants (e.g. Rao (1965)):

A=+¥T|': (6)

-~

where W is the within-group adjusted squares and products matrix and T
are the total adjusted squares and products matrix. The criterion A takes
the values of 0<A<l. When A = 0, there is a complete discrimination, when
A = 1, there is no discriminatory power at all.

The sfepwise selection of variables with the greatest discriminative
power was programmed by Bartkowiak (1982b) and can be performed upwards
and downwards.

5. THE MONTE CARLO METHOD OF SUBSET CHOICE

An extensive theoretical description of the Monte Carlo methods can
be found for instance in Zielinski (1972). The aim of the present authors



was to evaluate the performance of one of such methods (Bartkowiak (1985))
in biometrical problems.

In the problem of subset selection, the Monte Carlo method can be
used for generating declared number of subsets with r variables out
of the complete set of p variables. Then only these generated subsets
are taken into consideration and the values of the criterion function

considered are compared only for them. These criteria are:

A. in multiple regression analysis - R:(l ) i.e., the determination
pus ey
coefficient (formula (2)),
B. in the search of the most representative variables by regression
k
(o]

analysis methods - SSE(il""’ir)'

i.e.., the maximal residual sum of

squares (formula (5)),
C. in the search of variables with the greatest discriminatory power -
Wilks A statistic (formula (6)).

The simulation of the subset may be performed in two ways:

(a) numbers of the predictor variables taken to the subset are generated
out of the set {1,2,...,p} as pseudo-random numbers in accordance with
uniform distribution,

(b) numbers of the predictor variables taken to the subset are generated
in accordance with the distribution of the weights of P predictor
variables (Bartkowiak (1985)).

Variant (b) is realized in the following way:

1° At the 'beginning of the simulation, the weight W (i=1,2,...,0) of
each variable equals 1/p as in the variant (a). The starting value of
the criterion K equals K = K, -
° The subset is generated.
° When the computed value of the considered criterion K, i.e., Kco-p is
better than K we set
W, p= 0.5 (wi +1/r) (=125 s sa®)™ 5
j .
W, i = 0.5 w, (k=1,2,...,p-T) ,
r+k r+k
kK : =K .
comp
This means that the selected variables are "rewarded" and the remaining
variables are "punished".
Then a new subset is generated once more (return to 2°).
4° When K is worse than K, we set
comp
wij: = 0.5 wi\j . tI=1,8,50052)
w5 ' =2°0.8 (wi + 1/(p-r)} (kz1y 2500 3D~T) o
r+k r+k

This means that the selected variables are "punished", the remaining
ones are "rewarded".

Then a new subset is generated once more (return to 2°).



For their analysis the authors used the statistical package A-STAT in
the ALGOL 1900 language (Bartkowiak (1985)) with procedures realizing both
variants (a) and (b).

6. MEDICAL EXAMPLE

The data used to compare the stepwise selection method to the Monte
Carlo one were collected in the Department of Internal Diseases, Medical
Academy of Wroctaw and comprised results of examination of 105 patients

«whn were divided into 4 groups:

I. patients with obstructive type of ventilatory defect (n=48),
II. patients with restrictive type of ventilatory defect (n=21),
III. patients with mixed ventilatory gunction loss (n=19),

IV. a control group without ventilatory defects (n=17).

Each patient was spirometrically examined to obtain the following

basic spirometric parameters:

FVC (dms) - forced vital capacity,

FEV1 (dg3) ~ forced expiratory volume in one second,

FMF (dm"/s) - forced midexpiratory flow,

FEFy »,_) 5 {dm /B): = forced expiratory flowiab D42 - 1.2.de" of FVC:
MMFT (s) - time of FMF:

These parameters are easily obtainable by a direct measurement of
volume and flow rate of air during one forced expiration. Additionally,
the total lung capacity—TLC(dna) and the residual volu-e—RV(dna) were
measured by a helium method. Height and simple measurements of the chest
were also collected for each patient. The total number of variables
was 47. The hypotheses on univariate normality of these variables and on
the homoscedasticity of covariance matrices were rejected at the
significance level a = 0.05. Some previous results obtained for this set
of data were given by Krusifiska and Liebhart (1985).

The statistical analysis was performed in 3 variants.

A. Multiple linear regression analysis .

The total lung capacity TLC was treated as the dependent variable y.
TLC is the volume of air contained in the lungs after maximum inspiration.
TLC and the residual volume RV (the volume of air which always remains in
chest when a deep expiration is finished) cannot be obtained by a simple
spirometric examination during forced expiration. Special expensive
techniques such as plethysmography, helium method or rentgenography are
necessary. These methods are complicated and time consuming. Therefore,
the linear regression equation for TLC was found stepwisely (Liebhart et
al. (1985)) for the whole sample and for each group separatelyv. The

variables were chosen for the regression equation out of a sel of 41



features (independent of TLC and RV). Now the results of the stepwise
selection by the jerking method are compared with the Monte Carlo choice
results. The number of generated subsets was equal to the number of
subsets analysed by a stepwise method or was two and three times larger.
Subsets from 2 to 6 variables were taken into consideration. The
comparison of results for the whole sample of 105 patients is presented,in
Table 1 (the Monte Carlo subsets better than those of the stepwise
selection are marked with *). Additionally the best subset obtained by the
Monte Carlo method (consisted of 2 up to 6 variables) and the stgpwise
selection subset are listed in the table, too. The results are very

promising. All subsets obtained by the Monte Carlo method are better. From

Table 1. The comparison of results in linear regression

) R2
number y(1,2,...,r)

N RF TRt of varia- number of subsets analysed variables in the
bles in by the Monte Carlo method best subsets
subset as in 2x 3x

stepwise stepwise stepwise
»
(a) 2 0.1845 0.7693 0.7693* FVC % of predicted
* * * value, one measure-

(b) 0.7693 0.7670 0.7693 Sent or.the ohost

stepwise 0.6795 height,FVC

(a) 3 0.9059* 0.9059* 0.9259* age, two measure-

(b) 0.7649% 0.9059% 0.9258"  ments of the chest

stepwise 0.7237 height, FVC, one

measurement of the’
chest
: * * *

(a) 4 0.7798 0.8963 0.8963 age, three measure-

(b) o«agna’, 09857 .0.q08%" ;| MEGEE OF Clis chest

stepwise 0.7328 height, FVC, two

' measurements of the
chest

(a) 5 0.9233% 0.9233" 0.9263"  age, height,.FEV,,

(b) singet® oredea” orddeg¥y | “UNO EERRHEESGRDE 101

chest
stepwise 0.7424 FvVC, FEV1 predicted/
FVC predicted x 100,
three measurements
of the chest
| *
(a) 6 0.9272% 0.9272% 0.9272°  age, height, FEV
* * * predicted/ FVC pre-

(b) ‘ 0.9174 0.9281 0.9288 Aietad x 100X tyo
measurements of the
chest

stepwise 0.7495- FVC, five measure-

ments of the chest

* indicates better result obtained by the Monte Carlo method,
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the medical point of view it is interesting that almost in all the subqets
obtained by the stepwise or Monte Carlo method geometrical measurements of
the chest have appeared. E.g. the Monte Carlo subset consisting of three
variables contains the features: age and two measurements of the chest.
The determination coefficient equals 0.9259 and is considerably larger
than that for the stepwise selection subset (equal to 0.7237). So the
regression equation with those three variables chosen by the Monte Carlo
method gives good results of TLC prediction and may be used in practice.
Such a predﬂction is easy and can be made simultaneously with the standard

spirometric examination during one forced expiration.

B. Interdependence analysis by the regression analysis method.

The choice of the most representative variables was made by the
regression analysis method. The results obtained for the whole sample of
patients are summarized in Table 2. The stepwise selection was performed
upwards and downwards. A criterion for the choice of the. subset was the
maximum residual sum of squares. Only a few results obtained by the Monte
Carlo method are better than the results of the stepwise selection even
when the number of generated subsets is three times larger than the
number of subsets analysed by the stepwise method. Additionally, the
stepwise selection subsets and the best Monte Carlo subsets are listed in
the table. The stepwise selection subsets contain FVC %X (of the predicted
value) and measurements of the chest. It has appeared that the Monte Carlo
selection subsets are enriched by other spirometric paranetérs, such as
FEVI, FMF/HMFT, RV %X and age. So it can be said that the information
provided by a simple spirometric examination cannot be omitted and the
basic spirometric parameters besides measurements of the chest should be

treated as representative of the whole set.

C. The choice of the most discriminative variables

The choice of the most discriminative variables was performed b&
differentiating between 4 considered groups - 3 types of ventilatory
defects (obstruction, restriction, mixed type) dnd a norm. - From the
medical point of view such a choice is very important because it permits
to find the most diagnostic features in differentiating between various
diseases or, as in our example, between various ventilatory defects and a
norm, Then the automatic assistance in diagnosis by the use of
discriminant functions may be performed for the most diagnostic features
(chosen statistically). As it can be seen from Table 3 presenting the
comparison of the stepwise and Monte Carlo selection an improvement of
the results in choosing of the most discriminative features by the Monte
Carlo method was obtained only in one case. The Monte Carlo selection
subset consisting of two variables is better than that obtained by the
stepwise method. It has appeared that FVC % and RV % differentiate
better between the various ventilatory defects and the norm than FEV. %

1
and RV %. Further results of the stepwise selection confirm that the
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Table 2. The comparison of results in interdependence analysis

SSE
i%,1 i°
number of ' ¥oirg ) il

variant variables number of subsets analysed
in subset by the Monte Carlo method

variables in the
best subsets

as in 2x 3x
stepwise stepwise stepwise
(a) 2 0.9587 0.9587 0.958, FMF/MMFT, one mea-
* surement of the
(b) 0.9730 0.9587 0.9514 Eheat
stepwise 0.9587 two measurements
(upwards) of the chest
stepwise 0.9804
(downwards)
(a) 3 0.9386 0.9386 0.9852 FEV % two measure-
(b) 08482 . o.0668 . 0igidg®, Ments of the TREsS
stepwise 0.9349 FVC % (of predicted
(upwards) value), two measu-
atepyine 0.9615 remens of the chest
(downwards)
(a) 1 0.8947F 0.8947° 0.8947° age, FEV,, two mea-
(b) 0.8922*' 0.9078  0.89¢8 - SUrpments of the
chest
stepwise 0.8967 FVC %, three measu-
(upwards) rements of the
stepwise 0.9227 chest
(downwards)
(a) 5 0.8645 0.8645  0.8296° FEV,, FEV, X, RV X,
two measurements of
(b) 0.8683 0.8600 0.8600 e Sheat
stepwise 0.8597 FVC %, four measu-
(upwards) rements of the chest
stepwise 0.8940
(downwards)
* * * age, FVC %, RV %,
(a) 6 0.8261 0.8261* 0.8261* FMT/MMFT, two measu-
(b) 0.8424 0.8352 0.8419 rements of the chest
stepwise 0.8421 FVC %, five measure-
(upwards) ments of the chest
stepwise 0.8535
(downwards)

* indicates better result obtained by the Monte Carlo method

forced vital capacity (FVC) is ' 'a very important parameter in the
récognition of ventilatory defect (it hal'occurred as the third parameter
in the stepwise selection). Generally, it can be stated that the basic
spirometric parameters (obtained during one forced expiration) and RV %

are the most essential in differentiating between ventilatory defects.
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Table 3. The comparison of results in discriminant analysis

value of Wilks A statistic
number of number of subsets analysed

variant variables by the Monte Carlo method variables in the

best subsets

in subset as in 2x 3x
stepwise stepwise stepwise
(a) 2 0.5191 0.3888 0.4082 FVC % (of predicted
(b) 0.4059  0.2629% 0.3815 value), RV X
stepwise 0.3072 FEV1 %, RV %
(upwards) -
stepwise 0.5113
(downwards)
(a) -3 0.4687 0.2536 0.2974 FVC %, FMF, RV %
(b) ] 0.3376 0.2966 0.2239
stepwise 0.1730 FVC %, FEV1 %, RV %
(upwards)
stepwise 0.4925
(downwards)
(a) 4 0.2332 0.1924 0.2180 FVC, FVC %, FEVI,
(b) , 0.1842 _ 0.1752 _ 0.2128 "V %
stepwise 0.1523 FVC %, FEV1 %y
{upwards) FEVI/FVC x 100,RV %
stepwise 0.2293
(downwards)
(a) 5 0.2191 0.1790 0.1904 FEVg %, TLC, three
measurements of the
(b) 0.1833 0.164§ 0.1606 et
stepwise 0.1343 FVC %, FEV, %,
(upwards) . . FEV,/FVC x 100, FEV
stepwise 0.1660 predicted/FVC predi-
(downwards) ted x 100, RV % )
(a) 6 0.1653 0.1912 0.1648 FVC %, FEVﬁ/FVC x100
RV %, FVC/MMFT, one
(b) 0.1560 0.1612 0.1731 S Shsvément (ST Athe
chest
stepwise 0.1263 FVC %, FEV, %,
(upwards) FEV./FVC x 100, FEV
stepwise 0.1454 pre&icted/FVC predi-
(downwards) cted x 100, RV %,
one measurement of
the chest

* indicates better result obtained by the Monte Carlo method

7. SIMULATION STUDY

To make a more comprehensive comparison of the two methods discussed
~a simulation study was performed. The theory of multivariate regression
analysis and discriminant analysis is classically developed for normal
variables. Therefore, the pseudo-random data with multivariate normal
‘distribution were generated in 10 variants to check the performance of the

two methods of dimensionality reduction when the assumption on normality
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is fulfilled. The data used for the comparison were obtained by the GENMN
program (Bartkowiak, Krusinska (1986)). il

The multivariate random variable X = (XI,XZ,...,XS) is generated
from the multivariate normal distribution with zero mean vector and the
covariance matrix X using the method of Zielinski (1979). As the matrix
T, the Lietzke matrix (Lietzke et al. (1964)) is taken.

To compare the methods of dimensionality ieduction, two groups of
data consisting of n = 1000 individuals were generated. The number of
variables equalled 11. The first p=10 variables were treated as predictor
variables, the last one was treated as the dependent variable y for
linear regression. The first group of data had zero mean vector, the
second one had the vector

(-30, -20, -0, - %o. 0, 0, %o, o, 20, 30)

as the mean vector (where o is standard deviation). The different means
in the second group were chosen for variables to impose on them different
discriminatory power. As a common covariance matrix X for two groups of
data the Lietzke matrix was taken. The data were generated 10 times. The
regression analysis and the interdependence analysis were performed in
each group separately (totally 20 trials). The choice of variables with
the greatest discriminatory power was performed in differentiating between
two generated groups (10 trials).

The essential results are summarized in Table 4. The numbers of

results in the Monte Carlo selection that were better than those of the

Table 4. Number of results better in the Monte Carlo selection and number

of results better for variant (b) with unequal weights

number linear re- interdependence discriminant
comparison of variables gression analysis analysis
in subset (for 20 (for 20 (for 10
trials) trials) trials)
number of 2 20 20 0
results
better in 3 20 14 4
the Monte
Carlo se- 4 20 14 3
lection
than in 5 20 4 2
the step-
wise one 6 20 2 0
number of 2 0 3 4
results
better for 3 2 3 8
variant (b)
with un- 4 . 2 g 4 0
equal
weights 5 10 \ 0 2
than for

variant (a) 6 5 1 : 9
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stepwise selection are given in it. The number r of the variables in the
subset increas2s from 2 to 6 variables. To study the effect of weights on
the results of selection proce&ure the variants (a) and (b) (see Section
5) for subset generating were also compared. As seen in Table 4, all
trials for the linear regression were successful. In the interdependence
analysis the number of successful trials decreased with the increase in
the number of variables in the subsets. In more than half of the trials
the Monte Carlo method results were also better. The results obtained for
the choice of variables with the great-st discriminatory power werc not so
good. Only several trials were successful.

Table 4 also contains a comparison of the results of the Monte Carlo
method with (a) unéqua)l and (b) equal variable weights. The question was
whether the weights (different and changing during the run of the

generating procedurc) would 1mprove results of choosing a subset in (he

considered problems. A we can see, it 1is impossible to find a rule
concerning tho efrect o! the weights on the results of the sub ¢t choice.
Only in 53 trials (for the total number equal to 2°)) the results obtained
with diflere: weight ‘re ‘eiter than those with equal weights. It cannot

be also stated on (he asis ol our simulation study whether the influence
| p
of weights ¢n t! selection results decreases or increases with the .

increase of the number of variables in a subset.
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DWIE METODY REDUKCJI WYMTAROWOSCT - POROWNANIE DLA DANYCH MEDYCZNYCH
I BADANIA SYMULACYJNE

Streszczenie

W pracy przedyvskutowano redukeje wymiarowosci przestrzeni cech w
trzech zagadnieniach statystyveanveh., Byl to wybor zmiennych do réwnania
regres.i finiowaj, poszukiwanie najlepszyveh reprezentantéw metodami

analrizy regresil oraz wybor zmiennveh o najwiekszej sile dyskryminacji. We

'stkich tych zagadnieniach z uwagi na wysoki Loszt obliczeh nie moZna w

praktyee stosowaé¢ optymalne) metody wyboru podzbioru przy duzej liczbie
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zmiennych objasniajgcych. Dlatego tez w takim wypadku stosowana jest
zwykle metoda krokowa. W tej pracy postepowanie krokowe poréwnano z metodag
oparta na generowaniu pewnej deklarowanej liczby podzbioréw i wyborze
“najlepszego podzbioru spo$r6éd nich. Metody byly poréwnane na dwa sposoby.
Pierwsze zestawienie wykonano dla danych medycznych obejmujgcych chorych z
astma oskrzelowa lub przewlekliym nieZytem oskrzpli. Metoda Monte Carlo
data lepsze wyniki szczegdélnie dla regrésji liniowej, gdy liczba
wygenerowanych podzbiordéw przekraczata liczbe podzbioréw analizowanych w
metodzie krokowej. Ponadto przeprowadzono badania symulacyjne na danych
wygenerowanych z wielowymiarowego rozktadu normalnego. Liczby generowanych
podzbioréw cech w metodzie Monte Carlo i podzbioréw analizowanych w
metodzie krokowej byty réwne.



